Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Plant Sci ; 14: 1066509, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36875614

RESUMO

Diverse morphological, cellular and physiological changes occur during seed maturation in Bixa orellana when the seed tissues form specialized cell glands that produce reddish latex with high bixin amounts. Transcriptomic profiling during seed development in three B. orellana accessions (P12, N4 and N5) with contrasting morphologic characteristics showed enrichment in pathways of triterpenes, sesquiterpenes, and cuticular wax biosynthesis. WGCNA allows groups of all identified genes in six modules the module turquoise, the largest and highly correlated with the bixin content. The high number of genes in this module suggests a diversification of regulatory mechanisms for bixin accumulation with the genes belonging to isoprene, triterpenes and carotene pathways, being more highly correlated with the bixin content. Analysis of key genes of the mevalonate (MVA) and the 2C-methyl-D-erythritol-4-phosphate (MEP) pathways revealed specific activities of orthologs of BoHMGR, BoFFP, BoDXS, and BoHDR. This suggests that isoprenoid production is necessary for compounds included in the reddish latex of developing seeds. The carotenoid-related genes BoPSY2, BoPDS1 and BoZDS displayed a high correlation with bixin production, consistent with the requirement for carotene precursors for apocarotenoid biosynthesis. The BoCCD gene member (BoCCD4-4) and some BoALDH (ALDH2B7.2 and ALDH3I1) and BoMET (BoSABATH1 and BoSABATH8) gene members were highly correlated to bixin in the final seed development stage. This suggested a contributing role for several genes in apocarotenoid production. The results revealed high genetic complexity in the biosynthesis of reddish latex and bixin in specialized seed cell glands in different accessions of B. orellana suggesting gene expression coordination between both metabolite biosynthesis processes.

2.
Front Plant Sci ; 13: 829089, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35222486

RESUMO

Carotene cleavage dioxygenases (CCDs) are a large family of Fe2+ dependent enzymes responsible for the production of a wide variety of apocarotenoids, such as bixin. Among the natural apocarotenoids, bixin is second in economic importance. It has a red-orange color and is produced mainly in the seeds of B. orellana. The biosynthesis of bixin aldehyde from the oxidative cleavage of lycopene at 5,6/5',6' bonds by a CCD is considered the first step of bixin biosynthesis. Eight BoCCD (BoCCD1-1, BoCCD1-3, BoCCD1-4, CCD4-1, BoCCD4-2, BoCCD4-3 and BoCCD4-4) genes potentially involved in the first step of B. orellana bixin biosynthesis have been identified. However, the cleavage activity upon lycopene to produce bixin aldehyde has only been demonstrated for BoCCD1-1 and BoCCD4-3. Using in vivo (Escherichia coli) and in vitro approaches, we determined that the other identified BoCCDs enzymes (BoCCD1-3, BoCCD1-4, BoCCD4-1, BoCCD4-2, and BoCCD4-4) also participate in the biosynthesis of bixin aldehyde from lycopene. The LC-ESI-QTOF-MS/MS analysis showed a peak corresponding to bixin aldehyde (m/z 349.1) in pACCRT-EIB E. coli cells that express the BoCCD1 and BoCCD4 proteins, which was confirmed by in vitro enzymatic assay. Interestingly, in the in vivo assay of BoCCD1-4, BoCCD4-1, BoCCD4-2, and BoCCD4-4, bixin aldehyde was oxidized to norbixin (m/z 380.2), the second product of the bixin biosynthesis pathway. In silico analysis also showed that BoCCD1 and BoCCD4 proteins encode functional dioxygenases that can use lycopene as substrate. The production of bixin aldehyde and norbixin was corroborated based on their ion fragmentation pattern, as well as by Fourier transform infrared (FTIR) spectroscopy. This work made it possible to clarify at the same time the first and second steps of the bixin biosynthesis pathway that had not been evaluated for a long time.

3.
PeerJ ; 7: e7064, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31275744

RESUMO

Carotenoid cleavage dioxygenases (CCDs) are enzymes that have been implicated in the biosynthesis of a wide diversity of secondary metabolites with important economic value, including bixin. Bixin is the second most used pigment in the world's food industry worldwide, and its main source is the aril of achiote (Bixa orellana L.) seeds. A recent transcriptome analysis of B. orellana identified a new set of eight CCD members (BoCCD4s and BoCCD1s) potentially involved in bixin synthesis. We used several approaches in order to discriminate the best candidates with CCDs genes. A reverse transcription-PCR (RT-qPCR) expression analysis was carried out in five developmental stages of two accessions of B. orellana seeds with different bixin contents: (P13W, low bixin producer and N4P, high bixin producer). The results showed that three BoCCDs (BoCCD4-1, BoCCD4-3, and BoCCD1-1) had an expression pattern consistent with bixin accumulation during seed development. Additionally, an alignment of the CCD enzyme family and homology models of proteins were generated to verify whether the newly proposed CCD enzymes were bona fide CCDs. The study confirmed that these three enzymes were well-preserved and belonged to the CCD family. In a second selection round, the three CCD genes were analyzed by in situ RT-qPCR in seed tissue. Results indicated that BoCCD4-3 and BoCCD1-1 exhibited tissue-specific expressions in the seed aril. To test whether the two selected CCDs had enzymatic activity, they were expressed in Escherichia coli; activity was determined by identifying their products in the crude extract using UHPLC-ESI-QTOF-MS/MS. The cleavage product (bixin aldehyde) was also analyzed by Fourier transform infrared. The results indicated that both BoCCD4-3 and BoCCD1-1 cleave lycopene in vitro at 5,6-5',6'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...